内容详细
  • 2013年以前发表论文
  • 发布时间:2013-01-24 点击次数:3
  • 79. M. K. Song, E. J. Cairns, and Y. Zhang*, “Lithium-SulfurBatteries with High Specific Energy: Old Challenges and New Opportunities”(Feature Article), Nanoscale, in press.

    78. H. Tian, H. -Y. Chen, B. Gao, S. Yu, J. Liang, Y. Yang, D.Xie, J. Kang, T. -L. Ren, Y. Zhang,* and H.-S. P. Wong, “Monitoring OxygenMovement by Raman Spectroscopy of Resistive Random Access Memory with aGraphene-Inserted Electrode”, Nano Letters DOI: 10.1021/nl304246d, 2013.

    77. K. Cai, M. K. Song, E. J.Cairns, and Y. Zhang*, “Nanostructured Li2S−C Composites as CathodeMaterial for High- EnergyLithium/Sulfur Batteries”, Nano Letters 12, 6474−6479 (2012).

    76. Martin-Fernandez, D. Wang, andY. Zhang*, “Direct Growth of Graphene Nanoribbons for Large-Scale Device Fabrication”,Nano Letters 12, 6175−6179 (2012).

    75. J. Li, X. Fang, X. Wang, and Y.Zhang*, “Direct Growth of Vertical ZnO Nanorods on Single-Layer Graphene byElectrochemical Deposition”, Journalof Nanoengineering and Nanomanufacturing 2,367-370 (2012).

    74. C. Hwang,D. A. Siegel, S. K. Mo, W. Regan, A. Ismach, Y. Zhang, A. Zettl, and A. Lanzara,Fermi velocity engineering in graphene bysubstrate modification, Scientific Reports 2, 590 (2012).

    73. L. Zhang , L.Ji, P. Glans , Y. Zhang , J. Zhu and J. Guo, Electronic structure and chemical bonding of a graphene oxide–sulfurnanocomposite for use in superior performance lithium–sulfur cells, PhysicalChemistry Chemical Physics 14, 13670–13675 (2012).

    72. N. Tayebi, A. Yanguas-Gil, N. Kumar, Y. Zhang, J. R.Abelson, Y. Nishi, Q. Ma, and V. R. Rao, “Hard HfB2 tip-coatings forultrahigh density probe-based storage”, Applied Physics Letters 101, 091909 (2012).

    71. L. Zhang, E. Pollak, W. Wang, P.Jiang, P. Glans, Y. Zhang, J. Cabana, R. Kostecki, C. Chang, M. Salmeron, J.Zhu, J. Guo, “Electronic structure study of ordering and interfacialinteraction in graphene/Cu composites”, Carbon 50, 5316–5322 (2012).

    70. L. Ji, H. Xin, T. R. Kuykendall,S. Wu, H. Zheng, M. Rao, E. J. Cairns, V. Battaglia, and Y. Zhang*, “SnS2nanoparticle loaded graphene nanocomposites for superior energy storage”, Physical Chemistry Chemical Physics14, 6981–6986 (2012).

     

    69. L. Ji, H. Zheng, A. Ismach, Z.Tan, S. Xun, E. Lin, V. Battaglia, V. Srinivasan, Y. Zhang*, “Graphene/SiMultilayer Structure Anodes for Advanced Half and Full Lithium-Ion Cells”, Nano Energy1, 164–171 (2012).

     

    68. L. Ji, M. Rao, H. Zheng, L.Zhang, Y. Li, W. Duan, J. Guo, E. J. Cairns, and Y. Zhang*, “Graphene Oxide asa Sulfur Immobilizer in High Performance Lithium/Sulfur Cells”, Journal of the American Chemical Society133, 18522–18525 (2011).

     

    67. L. Ji, M. Rao, S. Aloni, L.Wang, E. J. Cairns, Y. Zhang*, “Porous Carbon Nanofiber-Sulfur CompositeElectrodes for Lithium/Sulfur Cells”, Energy & Environmental Science4, 5053-5059 (2011).

     

    66. C. Cagli, F. Nardi, B.Harteneck, Z. Tan, Y. Zhang*, and D. Ielmini, “Resistive-switching crossbarmemory based on Ni-NiO core-shell nanowires”, Small 7, 2899–2905 (2011).[Featured cover picture in Small,Volume 7, Issue 20, page 2818].

     

    65. L. Ji, Z. Tan, T. R. Kuykendall, E. J. An, Y. Fu, V.Battaglia, and Y. Zhang*, “Multilayer nanoassembly of Sn-nanopillar arrayssandwiched between graphene layers for high-capacity lithium storage”, Energy& Environmental Science 4, 3611-3616 (2011).

     

    64. L. Ji, Z. Tan, T. R. Kuykendall, S. Aloni, S. Xun, E. Lin,V. Battaglia, and Y. Zhang*, “Fe3O4nanoparticle-integrated graphene sheets for high-performance half and fulllithium ion cells”, PhysicalChemistry Chemical Physics 13, 7170-7177 (2011).

     

    63. G. Xu, C. M. Torres, Jr., J. Bai, J. Tang, T. Yu, Y. Huang,X. Duan, Y. Zhang, and K. Wang, “Linewidth roughness in nanowire-mask-basedgraphene nanoribbons”, Applied Physics Letters 98, 243118 (2011).

     

    62. G. Xu, C. M. Torres, Jr., J. Tang, J. Bai, E. B. Song, Y.Huang, X. Duan, Y. Zhang*, and K. Wang, “Edge Effect on Resistance ScalingRules in Graphene Nanostructures”, Nano Letters 11,1082-1086 (2011).

     

    61. G. Xu, C. M. Torres, Jr., E. B. Song, J. Tang, J. Bai, X.Duan, Y. Zhang*, and K. Wang, “Enhanced conductance fluctuation by quantumconfinement effect in graphene nanoribbons”, Nano Letters 10, 4590–4594 (2010).

     

    60. N. Tayebi, Y. Zhang*, R. J. Chen, Q. Tran, R. Chen, Y.Nishi, Q. Ma, and V. Rao, “An ultraclean tip-wear reduction scheme forultrahigh density scanning probe-based data storage”, ACSNano 4,5713–5720 (2010).

     

    59. G. Xu, J. Bai, C. M. Torres, Jr., E. B.Song, J. Tang,Y. Zhou, X. Duan, Y. Zhang, and K. L. Wang, “Low-noise submicronchannel graphene nanoribbons”, Applied Physics Letters 97, 073107(2010).

     

    58. G. Xu, C. M. Torres Jr., Y.Zhang*, F. Liu, E. B. Song, M. Wang, Y. Zhou, C. Zeng, and K. L. Wang, “Effect of spatial charge inhomogeneity on1/f noise behavior in graphene”, Nano Letters 10, 3312-3317 (2010).

     

    57. A. Ismach, C. Druzgalski, S. Penwell, AdamSchwartzberg, M. Zheng, A. Javey, J. Bokor, Y. Zhang*, “Direct chemical vapordeposition of graphene on dielectricsurfaces”, Nano Letters 10, 1542-1548 (2010).

     

    56. M. Zheng, K. Takei, B. Hsia, H. Fang, X.Zhang, N. Ferralis, H. Ko, Y. Chueh, Y. Zhang, R. Maboudian, and A. Javey,“Metal-catalyzed crystallization of amorphous carbon to graphene”, AppliedPhysics Letters 96, 063110 (2010).

     

    55. N. Tayebi, Y. Narui, N. Franklin, C. P.Collier, K. P. Giapis, Y. Nishi, and Y. Zhang*, “Fully inverted single-digitnanometer domains in ferroelectric films”, Applied Physics Letters 96,023103 (2010).

     

    54. J. R. McDonough, J. W. Choi, Y. Yang, F. LaMantia, Y. Zhang*, and Y. Cui, “Carbon nanofiber supercapacitors with largeareal capacitances”, Applied Physics Letters 95, 243109(2009).

     

    53. X. Liang, A. S. P. Chang, Y. Zhang, B. D.Harteneck, H. Choo, D. L. Olynick, and S. Cabrini, “Electrostatic forceassisted exfoliation of prepatterned few-layer graphenes into device sites”, NanoLetters 9, 467-472 (2009).

     

    52. N. Teyabi, Y. Narui, R. Chen, C. P.Collier, K. Giapis, Y. Zhang*, “Nanopencil as a wear-tolerant probe forultrahigh density data storage”, Applied Physics Letters 93, 103112(2008).

     

    51. D. Ielmini and Y. Zhang, “Evidence fortrap-limited transport in the sub-threshold conduction regime of chalcogenideglasses”, Applied Physics Letters 90, 192102 (2007).

     

    50. D. Ielmini and Y. Zhang, “Analytical modelfor sub-threshold conduction and threshold switching in chalcogenide-basedmemory devices”, Journal of Applied Physics102, 054517 (2007).

     

    49. D. Ielmini and Y. Zhang*, “Physics-basedanalytical model of chalcogenide-based memories for array simulation”, IEDM(International Electron Devices Meeting) Technical Digest, 401-404,2006.

     

    48. Y. Zhang*, “Carbon nanotube basednonvolatile memory devices” (invited review paper), International Journal of HighSpeed Electronics and Systems, 16, 959-975 (2006).

     

    47. J. Guo, E. Kan, U. Ganguly, Y. Zhang, “High sensitivity andnonlinearity of carbon nanotube charge-based sensors”, Journal of Applied Physics 99, 084301 (2006).

     

    46. R. J. Chen and Y.Zhang*, “Controlledprecipitation of solubilized carbon nanotubes by delamination of DNA”, Journalof Physical Chemistry B 110, 54-57 (2006).

     

    45. U. Ganguly, J. Guo, E. Kan, Y. Zhang*, “Carbon nanotube basednon-volatile memory and charge sensors” (Invited paper), Proceedings of SPIE, Vol.6003, 60030H (2005).

     

    44. U. Ganguly, E. Kan, Y. Zhang*, “Carbon nanotube-based nonvolatile memory with chargestorage in metal nanocrystals” Applied Physics Letters 87, 043108(2005).

     

    43. S. Tan, H. Lopez, Y. Zhang*, “In-situ Raman andfluorescence monitoring of optically trapped single-walled carbon nanotubes”(Invited paper), Proceedings of SPIE, Vol. 5593, 73-81 (2004).

     

    42. S. Tan, H. A. Lopez, C. W. Cai, Y. Zhang*,“Optical trapping of single-walled carbon nanotubes”, Nano Letters 4, 1415-1419(2004).

     

    41. S. Zhang, X. Hu, H. Li, Z. Shi, K. Yue, J.Zi, Z. Gu, X. Wu, Z. Lian, Y. Zhan, F. Huang, L. Zhou, Y. Zhang, S. Iijima, “Abnormal anti-Stokes Raman scattering of carbon nanotubes”, PhysicalReview B 66, 035413 (2002).

     

    40. Y. Zhang, Y. Li, W. Kim, D. Wang, H. Dai,“Imaging as-grown single-walled carbon nanotubes originated from isolatedcatalytic nanoparticles”, AppliedPhysics A 74,325-328 (2002).

     

    39. A. Goldoni, R. Larciprete, L. Gregoratti,B. Kaulich, M. Kiskinova, Y. Zhang, H. Dai, L. Sangaletti and F. Parmigiani,“X-ray photoelectron microscopy of the C1 score level of free-standingsingle-wall carbon nanotube bundles”, AppliedPhysics Letters 80, 2165(2002).

     

    38. Y. Zhang, A. Chang, J. Cao, Q. Wang, W.Kim, Y. Li, N. Morris, E. Yenilmez, J. Kong, H. Dai, “Electric-field-directedgrowth of aligned single-walled carbon nanotubes”, Applied Physics Letters 79, 3155-3157 (2001).

     

    37. R. Chen, N. Franklin, J. Kong, J. Cao, T.Tombler, Y. Zhang, H. Dai, “Molecular photodesorption from single-walled carbonnanotubes”, Applied Physics Letters79, 2258-2260 (2001).

     

    36. Y. Li, W. Kim, Y. Zhang, M. Rolandi, D.Wang, H. Dai, “Growth of single-walled carbon nanotubes from discrete catalyticnanoparticles of various sizes”, JournalPhysical Chemistry B 105, 11424 (2001).

     

    35. R. Chen, Y. Zhang, D. Wang, H. Dai,“Noncovalent sidewall functionalization of single-walled carbon nanotubes forprotein immobilization”, Journal of the American Chemical Society123, 3838-3839 (2001).

     

    34. Y. Zhang, H. Dai, “Formation of metalnanowires on suspended single-walled carbon nanotubes”, Applied Physics Letters77, 3015-3017 (2000).

     

    33. ­Y. Zhang, N. W. Franklin, R. J. Chen, H.Dai, “Metal coating on suspended carbon nanotubes and its implication to metal-tubeinteraction”, Chemical Physics Letters 331, 35-41 (2000).

     

    32. Y. Zhang* and S. Iijima, “Controllable methodfor fabricating single-wall carbon nanotube tips”, Applied Physics Letters77, 966-968 (2000).

     

    31. Y. Zhang* and S. Iijima, “Microstructuralevolution of single-walled carbon nanotubes under electron irradiation”, PhilosophicalMagazine Letters 80, 427-433 (2000).

     

    30. Y. Zhang*, Z. Shi, Z. Gu, and S. Iijima,“Structure modification of single-wall carbon nanotubes”, Carbon 38, 2055-2059(2000).

     

    29. K. Suenaga, Y. Zhang, S. Iijima, “Coiledstructure of eccentric coaxial nanocable made of amorphous boron and siliconoxide”, Applied Physics Letters 76, 1564-1566 (2000).

     

    28. Z. Shi, Y. Lian, F. H. Liao, X. Zhou, Z.Gu, Y. Zhang, S. Iijima, H. Li, K. T. Yue, S-L. Zhang, “Large scale synthesisof single-wall carbon nanotubes by arc-discharge method”, Journal of Physics and Chemistryof Solids 61, 1031-1036 (2000).

     

    27. Z. Shi, Y. Lian, X. Zhou, Z. Gu, Y. Zhang,S. Iijima, Q. Gong, H. Li, and S-L. Zhang, “Single-wall carbon nanotubecolloids in polar solvents”, Chemical Communications, 461-462(2000).

     

    26. H. D. Li, Z. L. Lian, K. T. Yue, Y. Zhan,S. L. Zhang , Z. J. Shi, X. H. Zhou, Y. F. Lian, Z. N. Gu, B. B. Liu, R. S.Yang, H. B. Yang, G. T. Zou, Y. Zhang, and S. Iijima, “Temperature dependenceof the Raman spectra of single-wall carbon nanotubes”, Applied Physics Letters76, 2053-2055 (2000).

     

    25. Y. Zhang* and S. Iijima, “Formation ofsingle-wall carbon nanotubes by laser ablation of fullerenes at lowtemperature”, Applied Physics Letters 75, 3087-3089 (1999).

     

    24. Z. Shi, Y. Lian, X. Zhou, Z. Gu, Y. Zhang,S. Iijima, H. Li, K. T. Yue, S-L. Zhang, “Production of single-wall carbonnanotubes at high pressure”, Journal of Physical Chemistry B 103,8698-8701 (1999).

     

    23. Z. Shi, Y. Lian, F. Liao, X. Zhou, Z. Gu,Y. Zhang, S. Iijima, “Purification of single-wall carbon nanotubes”, SolidState Communications 112, 35-37 (1999).

     

    22. O. Lourie, H. D. Wagner, Y. Zhang, and S.Iijima, “Dependence of elastic properties on morphology in single-wall carbonnanotubes”, Advanced Materials 11, 931-934 (1999).

     

    21. Y. Zhang* and S. Iijima, “Elastic responseof carbon nanotube bundles to visible light”, Physical Review Letters82, 3472-3475 (1999).

     

    20. Y. Zhang*, S. Iijima, Z. Shi, and Z. Gu,“Defects in arc-discharge-produced single-walled carbon nanotubes”, PhilosophicalMagazine Letters 79, 473-479 (1999).

     

    19. Z. Shi, Y. Lian, X. Zhou, Z. Gu, L. Zhou,K. T. Yue, S. Zhang, Y. Zhang, S. Iijima, “Mass-production of single-wallcarbon nanotubes by arc discharge method”, Carbon 37, 1449-1453 (1999).

     

    18. Y. Zhang*, T. Ichihashi, E. Landree, F.Nihey, and S. Iijima, “Heterostructures of single-walled carbon nanotubes andcarbide nanorods”, Science 285, 1719-1722 (1999).

     

    17. Y. Zhang*, K. Suenaga, C. Colliex, and S.Iijima, “Coaxial nanocable: Silicon carbide and silicon oxide sheathed withboron nitride and carbon”, Science 281, 973-975 (1998).

     

    16. Y. Zhang*, H. Gu, and S. Iijima,“Single-wall carbon nanotubes synthesized by laser ablation in a nitrogenatmosphere”, Applied Physics Letters 73, 3827-3829 (1998).

     

    15. Y. Zhang and S. Iijima, “Microscopicstructure of as-grown single-wall carbon nanotubes by laser ablation”, PhilosophicalMagazine Letters 78, 139-144 (1998).

     

    14. Y. Zhang*, H. Gu, K. Suenaga, and S.Iijima, “Heterogeneous growth of B-C-N nanotubes by laser ablation”, ChemicalPhysics Letters 279, 264-269 (1997).

     

    13. Y. Zhang, H. Ichinose, M. Nakanose, K. Ito,and Y. Ishida, “Structure modeling of S3 and S9 coincident boundaries in CVD diamond thinfilms”, Journal of Electron Microscopy 48, 245-251 (1999).

     

    12. K. Kohyama, H. Ichinose, Y. Zhang, Y.Ishida and M. Nakanose, “Tight-binding calculation of the {211} S=3 boundary indiamond”, Interface Science 4, 157-167 (1997).

     

    11. H. Ichinose, M. Nakanose, Y. Zhang, “Atomic andelectron structure of diamond grain boundaries in a polycrystalline film”, Materials Research Society symposiumproceedings 472,93-98 (1997).

     

    10. H. Ichinose, Y. Zhang, Y. Ishida, K. Ito,and M. Nakanose, “Application of spatially resolved EELS on atomic structuredetermination of diamond grain boundary”, MaterialsResearch Society Symposium Proceedings 466, 273-278 (1997).

     

    9. Y. Zhang, H. Ichinose, M. Nakanose, K. Ito,and Y. Ishida, “Transmission electron microscopic observation of grainboundaries in CVD diamond thin films”, Journal of Electron Microscopy 45,436-441 (1996).

     

    8. Y. Zhang, H. Ichinose, Y. Ishida, K. Ito,and M. Nakanose, “Atomic and electronic structures of grain boundary inchemical vapor deposited diamond thin film”, Materials Research Society Symposium Proceedings 416, 355-360 (1996).

     

    7. Y. Zhang, H. Ichinose, K. Ito, Y. Ishida,and M. Nakanose, “Grain boundary structure and growth sequence of diamond thinfilm”, Materials Science Forum204-206, 207-214 (1996).

     

    6. H. Ichinose, Y. Zhang, Y. Ishida, and M.Nakanose, “Morphology, atomic structure and electronic structure of artificialdiamond grain boundary”, JEOL NewsVol. 32E, No. 1, p. 16, 1996

     

    5. Y. Zhang, H. Ichinose, Y. Ishida, and M.Nakanose, “HRTEM of grain boundaries in diamond thin film”, Proceedings ofthe 2nd NIRIM International Symposium on Advanced Materials (ISAM’95), 271-274 (1995).

     

    4. Y. Ishida, Y. Zhang, T. Katoh, H. Ichinose,“High resolution transmission electron microscopy of a segregated aluminumgrain boundary and of diamond grain boundaries”, Annales de Physique C320, 83-89 (1995).

     

    3. Y. Zhang, S. Fan, C. Shi, Z. Niu, and B.Gu, “In-situ fabrication ofYBCO/YSZ/Si thin films by laser ablation”, PhysicaC 185-189, 1997-1998 (1991).

     

    2. Y. Zhang, C. Shi, S. Fan, C. Cui, S. Li, J.Li, and M. Liu, “Preparation and critical current measurements of laser ablatedYBCO superconducting thin films”, ChinesePhysics Letters 8, 416-419 (1991).

     

    1. Y. Zhang, C. Shi, S. Fan, “In-situ fabrication of superconductingYBCO thin films by PLD method”, Cryogenicsand Superconductivity (In Chinese), Vol.19, No.1, p. 45-47, 1991.